

ruyaml

Github [https://github.com/pycontribs/ruyaml] |
PyPI [https://pypi.python.org/pypi/ruyaml/]

Contents:

	Overview

	Installing
	Optional requirements

	Basic Usage
	More examples

	Dumping Python classes

	Details
	Indentation of block sequences

	Positioning ‘:’ in top level mappings, prefixing ‘:’

	Examples
	Output of dump() as a string

	Departure from previous API
	Loading

	Dumping a multi-documents YAML stream

	Dumping

	Transparent usage of new and old API

	Reason for API change

	Differences with PyYAML
	Defaulting to YAML 1.2 support

	Python Compatibility

	Fixes

	Testing

	API

	Contributing
	Documentation

	Code

	Vulnerabilities

	Upstrem Merge
	Preparation

	Incremental merge

[image: _images/af22ea6e1c88c1256389ec2d12d7e1777d5c3eea.svg]
 [https://ruyaml.readthedocs.org/en/stable]

Overview

ruyaml is a YAML 1.2 loader/dumper package for Python. It is a
derivative of Kirill Simonov’s PyYAML 3.11 [https://bitbucket.org/xi/pyyaml].

ruyaml supports YAML 1.2 [http://www.yaml.org/spec/1.2/spec.html] and has round-trip loaders and dumpers.

	comments

	block style and key ordering are kept, so you can diff the round-tripped
source

	flow style sequences (‘a: b, c, d’) (based on request and test by
Anthony Sottile)

	anchor names that are hand-crafted (i.e. not of the form``idNNN``)

	merges [http://yaml.org/type/merge.html] in dictionaries are preserved

This preservation is normally not broken unless you severely alter
the structure of a component (delete a key in a dict, remove list entries).
Reassigning values or replacing list items, etc., is fine.

For the specific 1.2 differences see Defaulting to YAML 1.2 support

Although individual indentation of lines is not preserved, you can specify
separate indentation levels for mappings and sequences (counting for sequences
does not include the dash for a sequence element) and specific offset of
block sequence dashes within that indentation.

Although ruyaml still allows most of the PyYAML way of doing
things, adding features required a different API then the transient
nature of PyYAML’s Loader and Dumper. Starting with
ruyaml version 0.15.0 this new API gets introduced. Old ways
that get in the way will be removed, after first generating warnings
on use, then generating an error. In general a warning in version 0.N.x will become an
error in 0.N+1.0

Many of the bugs filed against PyYAML, but that were never
acted upon, have been fixed in ruyaml

Installing

Make sure you have a recent version of pip and setuptools
installed. The later needs environment marker support
(setuptools>=20.6.8) and that is e.g. bundled with Python 3.4.6 but
not with 3.4.4. It is probably best to do:

pip install -U pip setuptools wheel

in your environment (virtualenv, (Docker) container, etc) before
installing ruyaml.

ruyaml itself should be installed from PyPI [https://pypi.python.org/pypi] using:

pip install ruyaml

If you want to process jinja2/YAML templates (which are not valid YAML
with the default jinja2 markers), do pip install
ruyaml[jinja2] (you might need to quote the last argument
because of the [])

There also is a commandline utility yaml available after installing:

pip install ruyaml.cmd

that allows for round-trip testing/re-indenting and conversion of YAML
files (JSON,INI,HTML tables)

Optional requirements

If you have the the header files for your Python executables installed
then you can use the (non-roundtrip), but faster, C loader and emitter.

On Debian systems you should use:

sudo apt-get install python3-dev

you can leave out python3-dev if you don’t use python3

For CentOS (7) based systems you should do:

sudo yum install python-devel

Basic Usage

You load a YAML document using:

from ruyaml import YAML

yaml=YAML(typ='safe') # default, if not specfied, is 'rt' (round-trip)
yaml.load(doc)

in this doc can be a file pointer (i.e. an object that has the
.read() method, a string or a pathlib.Path(). typ='safe'
accomplishes the same as what safe_load() did before: loading of a
document without resolving unknown tags. Provide pure=True to
enforce using the pure Python implementation, otherwise the faster C libraries will be used
when possible/available but these behave slightly different (and sometimes more like a YAML 1.1 loader).

Dumping works in the same way:

from ruyaml import YAML

yaml=YAML()
yaml.default_flow_style = False
yaml.dump({'a': [1, 2]}, s)

in this s can be a file pointer (i.e. an object that has the
.write() method, or a pathlib.Path(). If you want to display
your output, just stream to sys.stdout.

If you need to transform a string representation of the output provide
a function that takes a string as input and returns one:

def tr(s):
 return s.replace('\n', '<\n') # such output is not valid YAML!

yaml.dump(data, sys.stdout, transform=tr)

More examples

Using the C based SafeLoader (at this time is inherited from
libyaml/PyYAML and e.g. loads 0o52 as well as 052 load as integer 42):

from ruyaml import YAML

yaml=YAML(typ="safe")
yaml.load("""a:\n b: 2\n c: 3\n""")

Using the Python based SafeLoader (YAML 1.2 support, 052 loads as 52):

from ruyaml import YAML

yaml=YAML(typ="safe", pure=True)
yaml.load("""a:\n b: 2\n c: 3\n""")

Dumping Python classes

Only yaml = YAML(typ='unsafe') loads and dumps Python objects out-of-the-box. And
since it loads any Python object, this can be unsafe.

If you have instances of some class(es) that you want to dump or load, it is
easy to allow the YAML instance to do that explicitly. You can either register the
class with the YAML instance or decorate the class.

Registering is done with YAML.register_class():

import sys
import ruyaml

class User:
 def __init__(self, name, age):
 self.name = name
 self.age = age

yaml = ruyaml.YAML()
yaml.register_class(User)
yaml.dump([User('Anthon', 18)], sys.stdout)

which gives as output:

- !User
 name: Anthon
 age: 18

The tag !User originates from the name of the class.

You can specify a different tag by adding the attribute yaml_tag, and
explicitly specify dump and/or load classmethods which have to be called
from_yaml resp. from_yaml:

import sys
import ruyaml

class User:
 yaml_tag = u'!user'

 def __init__(self, name, age):
 self.name = name
 self.age = age

 @classmethod
 def to_yaml(cls, representer, node):
 return representer.represent_scalar(cls.yaml_tag,
 u'{.name}-{.age}'.format(node, node))

 @classmethod
 def from_yaml(cls, constructor, node):
 return cls(*node.value.split('-'))

yaml = ruyaml.YAML()
yaml.register_class(User)
yaml.dump([User('Anthon', 18)], sys.stdout)

which gives as output:

- !user Anthon-18

When using the decorator, which takes the YAML() instance as a parameter,
the yaml = YAML() line needs to be moved up in the file:

import sys
from ruyaml import YAML, yaml_object

yaml = YAML()

@yaml_object(yaml)
class User:
 yaml_tag = u'!user'

 def __init__(self, name, age):
 self.name = name
 self.age = age

 @classmethod
 def to_yaml(cls, representer, node):
 return representer.represent_scalar(cls.yaml_tag,
 u'{.name}-{.age}'.format(node, node))

 @classmethod
 def from_yaml(cls, constructor, node):
 return cls(*node.value.split('-'))

yaml.dump([User('Anthon', 18)], sys.stdout)

The yaml_tag, from_yaml and to_yaml work in the same way as when using
.register_class().

Details

	support for simple lists as mapping keys by transforming these to tuples

	!!omap generates ordereddict (C) on Python 2, collections.OrderedDict
on Python 3, and !!omap is generated for these types.

	Tests whether the C yaml library is installed as well as the header
files. That library doesn’t generate CommentTokens, so it cannot be used to
do round trip editing on comments. It can be used to speed up normal
processing (so you don’t need to install ruyaml and PyYaml).
See the section Optional requirements.

	Basic support for multiline strings with preserved newlines and
chomping (‘|’, ‘|+’, ‘|-’). As this subclasses the string type
the information is lost on reassignment. (This might be changed
in the future so that the preservation/folding/chomping is part of the
parent container, like comments).

	anchors names that are hand-crafted (not of the form``idNNN``) are preserved

	merges [http://yaml.org/type/merge.html] in dictionaries are preserved

	adding/replacing comments on block-style sequences and mappings
with smart column positioning

	collection objects (when read in via RoundTripParser) have an lc
property that contains line and column info lc.line and lc.col.
Individual positions for mappings and sequences can also be retrieved
(lc.key('a'), lc.value('a') resp. lc.item(3))

	preservation of whitelines after block scalars. Contributed by Sam Thursfield.

In the following examples it is assumed you have done something like::

from ruyaml import YAML
yaml = YAML()

if not explicitly specified.

Indentation of block sequences

Although ruyaml doesn’t preserve individual indentations of block sequence
items, it does properly dump:

x:
- b: 1
- 2

back to:

x:
- b: 1
- 2

if you specify yaml.indent(sequence=4) (indentation is counted to the
beginning of the sequence element).

PyYAML (and older versions of ruyaml) gives you non-indented
scalars (when specifying default_flow_style=False):

x:
- b: 1
- 2

You can use mapping=4 to also have the mappings values indented.
The dump also observes an additional offset=2 setting that
can be used to push the dash inwards, within the space defined by sequence.

The above example with the often seen yaml.indent(mapping=2, sequence=4, offset=2)
indentation:

x:
 y:
 - b: 1
 - 2

The defaults are as if you specified yaml.indent(mapping=2, sequence=2, offset=0).

If the offset equals sequence, there is not enough
room for the dash and the space that has to follow it. In that case the
element itself would normally be pushed to the next line (and older versions
of ruyaml did so). But this is
prevented from happening. However the indent level is what is used
for calculating the cumulative indent for deeper levels and specifying
sequence=3 resp. offset=2, might give correct, but counter
intuitive results.

It is best to always have sequence >= offset + 2
but this is not enforced. Depending on your structure, not following
this advice might lead to invalid output.

Inconsistently indented YAML

If your input is inconsistently indented, such indentation cannot be preserved.
The first round-trip will make it consistent/normalize it. Here are some
inconsistently indented YAML examples.

b indented 3, c indented 4 positions:

a:
 b:
 c: 1

Top level sequence is indented 2 without offset, the other sequence 4 (with offset 2):

- key:
 - foo
 - bar

Positioning ‘:’ in top level mappings, prefixing ‘:’

If you want your toplevel mappings to look like:

library version: 1
comment : |
 this is just a first try

then set yaml.top_level_colon_align = True
(and yaml.indent = 4). True causes calculation based on the longest key,
but you can also explicitly set a number.

If you want an extra space between a mapping key and the colon specify
yaml.prefix_colon = ' ':

- https://myurl/abc.tar.xz : 23445
^ extra space here
- https://myurl/def.tar.xz : 944

If you combine prefix_colon with top_level_colon_align, the
top level mapping doesn’t get the extra prefix. If you want that
anyway, specify yaml.top_level_colon_align = 12 where 12 has to be an
integer that is one more than length of the widest key.

Document version support

In YAML a document version can be explicitly set by using:

%YAML 1.x

before the document start (at the top or before a
---). For ruyaml x has to be 1 or 2. If no explicit
version is set version 1.2 [http://www.yaml.org/spec/1.2/spec.html]
is assumed (which has been released in 2009).

The 1.2 version does not support:

	sexagesimals like 12:34:56

	octals that start with 0 only: like 012 for number 10 (0o12 is
supported by YAML 1.2)

	Unquoted Yes and On as alternatives for True and No and Off for False.

If you cannot change your YAML files and you need them to load as 1.1
you can load with yaml.version = (1, 1),
or the equivalent (version can be a tuple, list or string) yaml.version = "1.1"

If you cannot change your code, stick with ruyaml==0.10.23 and let
me know if it would help to be able to set an environment variable.

This does not affect dump as ruyaml never emitted sexagesimals, nor
octal numbers, and emitted booleans always as true resp. false

Round trip including comments

The major motivation for this fork is the round-trip capability for
comments. The integration of the sources was just an initial step to
make this easier.

adding/replacing comments

Starting with version 0.8, you can add/replace comments on block style
collections (mappings/sequences resuting in Python dict/list). The basic
for for this is:

from __future__ import print_function

import sys
import ruyaml

yaml = ruyaml.YAML() # defaults to round-trip

inp = """\
abc:
 - a # comment 1
xyz:
 a: 1 # comment 2
 b: 2
 c: 3
 d: 4
 e: 5
 f: 6 # comment 3
"""

data = yaml.load(inp)
data['abc'].append('b')
data['abc'].yaml_add_eol_comment('comment 4', 1) # takes column of comment 1
data['xyz'].yaml_add_eol_comment('comment 5', 'c') # takes column of comment 2
data['xyz'].yaml_add_eol_comment('comment 6', 'e') # takes column of comment 3
data['xyz'].yaml_add_eol_comment('comment 7', 'd', column=20)

yaml.dump(data, sys.stdout)

Resulting in:

abc:
- a # comment 1
- b # comment 4
xyz:
 a: 1 # comment 2
 b: 2
 c: 3 # comment 5
 d: 4 # comment 7
 e: 5 # comment 6
 f: 6 # comment 3

If the comment doesn’t start with ‘#’, this will be added. The key is
the element index for list, the actual key for dictionaries. As can be seen
from the example, the column to choose for a comment is derived
from the previous, next or preceding comment column (picking the first one
found).

Config file formats

There are only a few configuration file formats that are easily
readable and editable: JSON, INI/ConfigParser, YAML (XML is to cluttered
to be called easily readable).

Unfortunately JSON [http://www.json.org/] doesn’t support comments,
and although there are some solutions with pre-processed filtering of
comments, there are no libraries that support round trip updating of
such commented files.

INI files support comments, and the excellent ConfigObj [http://www.voidspace.org.uk/python/configobj.html] library by Foord
and Larosa even supports round trip editing with comment preservation,
nesting of sections and limited lists (within a value). Retrieval of
particular value format is explicit (and extensible).

YAML has basic mapping and sequence structures as well as support for
ordered mappings and sets. It supports scalars various types
including dates and datetimes (missing in JSON).
YAML has comments, but these are normally thrown away.

Block structured YAML is a clean and very human readable
format. By extending the Python YAML parser to support round trip
preservation of comments, it makes YAML a very good choice for
configuration files that are human readable and editable while at
the same time interpretable and modifiable by a program.

Extending

There are normally six files involved when extending the roundtrip
capabilities: the reader, parser, composer and constructor to go from YAML to
Python and the resolver, representer, serializer and emitter to go the other
way.

Extending involves keeping extra data around for the next process step,
eventuallly resulting in a different Python object (subclass or alternative),
that should behave like the original, but on the way from Python to YAML
generates the original (or at least something much closer).

Smartening

When you use round-tripping, then the complex data you get are
already subclasses of the built-in types. So you can patch
in extra methods or override existing ones. Some methods are already
included and you can do:

yaml_str = """\
a:
- b:
 c: 42
- d:
 f: 196
 e:
 g: 3.14
"""

data = yaml.load(yaml_str)

assert data.mlget(['a', 1, 'd', 'f'], list_ok=True) == 196

Examples

Basic round trip of parsing YAML to Python objects, modifying
and generating YAML:

import sys
from ruyaml import YAML

inp = """\
example
name:
 # details
 family: Smith # very common
 given: Alice # one of the siblings
"""

yaml = YAML()
code = yaml.load(inp)
code['name']['given'] = 'Bob'

yaml.dump(code, sys.stdout)

Resulting in:

example
name:
 # details
 family: Smith # very common
 given: Bob # one of the siblings

with the old API:

from __future__ import print_function

import sys
import ruyaml

inp = """\
example
name:
 # details
 family: Smith # very common
 given: Alice # one of the siblings
"""

code = ruyaml.load(inp, ruyaml.RoundTripLoader)
code['name']['given'] = 'Bob'

ruyaml.dump(code, sys.stdout, Dumper=ruyaml.RoundTripDumper)

the last statement can be done less efficient in time and memory with
leaving out the end='' would cause a double newline at the end
print(ruyaml.dump(code, Dumper=ruyaml.RoundTripDumper), end='')

Resulting in

example
name:
 # details
 family: Smith # very common
 given: Bob # one of the siblings

YAML handcrafted anchors and references as well as key merging
are preserved. The merged keys can transparently be accessed
using [] and .get():

from ruyaml import YAML

inp = """\
- &CENTER {x: 1, y: 2}
- &LEFT {x: 0, y: 2}
- &BIG {r: 10}
- &SMALL {r: 1}
All the following maps are equal:
Explicit keys
- x: 1
 y: 2
 r: 10
 label: center/big
Merge one map
- <<: *CENTER
 r: 10
 label: center/big
Merge multiple maps
- <<: [*CENTER, *BIG]
 label: center/big
Override
- <<: [*BIG, *LEFT, *SMALL]
 x: 1
 label: center/big
"""

yaml = YAML()
data = yaml.load(inp)
assert data[7]['y'] == 2

The CommentedMap, which is the dict like construct one gets when round-trip loading,
supports insertion of a key into a particular position, while optionally adding a comment:

import sys
from ruyaml import YAML

yaml_str = """\
first_name: Art
occupation: Architect # This is an occupation comment
about: Art Vandelay is a fictional character that George invents...
"""

yaml = YAML()
data = yaml.load(yaml_str)
data.insert(1, 'last name', 'Vandelay', comment="new key")
yaml.dump(data, sys.stdout)

gives:

first_name: Art
last name: Vandelay # new key
occupation: Architect # This is an occupation comment
about: Art Vandelay is a fictional character that George invents...

Please note that the comment is aligned with that of its neighbour (if available).

The above was inspired by a question [http://stackoverflow.com/a/36970608/1307905]
posted by demux on StackOverflow.

By default ruyaml indents with two positions in block style, for
both mappings and sequences. For sequences the indent is counted to the
beginning of the scalar, with the dash taking the first position of the
indented “space”.

You can change this default indentation by e.g. using yaml.indent():

import sys
from ruyaml import YAML

d = dict(a=dict(b=2),c=[3, 4])
yaml = YAML()
yaml.dump(d, sys.stdout)
print('0123456789')
yaml = YAML()
yaml.indent(mapping=4, sequence=6, offset=3)
yaml.dump(d, sys.stdout)
print('0123456789')

giving:

a:
 b: 2
c:
- 3
- 4
0123456789
a:
 b: 2
c:
 - 3
 - 4
0123456789

If a block sequence or block mapping is the element of a sequence, the
are, by default, displayed compact [http://yaml.org/spec/1.2/spec.html#id2797686] notation. This means
that the dash of the “parent” sequence is on the same line as the
first element resp. first key/value pair of the child collection.

If you want either or both of these (sequence within sequence, mapping
within sequence) to begin on the next line use yaml.compact():

import sys
from ruyaml import YAML

d = [dict(b=2), [3, 4]]
yaml = YAML()
yaml.dump(d, sys.stdout)
print('='*15)
yaml = YAML()
yaml.compact(seq_seq=False, seq_map=False)
yaml.dump(d, sys.stdout)

giving:

- b: 2
- - 3
 - 4
===============
-
 b: 2
-
 - 3
 - 4

The following program uses three dumps on the same data, resulting in a stream with
three documents:

import sys
from ruyaml import YAML

data = {1: {1: [{1: 1, 2: 2}, {1: 1, 2: 2}], 2: 2}, 2: 42}

yaml = YAML()
yaml.explicit_start = True
yaml.dump(data, sys.stdout)
yaml.indent(sequence=4, offset=2)
yaml.dump(data, sys.stdout)

def sequence_indent_four(s):
 # this will fail on direclty nested lists: {1; [[2, 3], 4]}
 levels = []
 ret_val = ''
 for line in s.splitlines(True):
 ls = line.lstrip()
 indent = len(line) - len(ls)
 if ls.startswith('- '):
 if not levels or indent > levels[-1]:
 levels.append(indent)
 elif levels:
 if indent < levels[-1]:
 levels = levels[:-1]
 # same -> do nothing
 else:
 if levels:
 if indent <= levels[-1]:
 while levels and indent <= levels[-1]:
 levels = levels[:-1]
 ret_val += ' ' * len(levels) + line
 return ret_val

yaml = YAML()
yaml.explicit_start = True
yaml.dump(data, sys.stdout, transform=sequence_indent_four)

gives as output:

1:
 1:
 - 1: 1
 2: 2
 - 1: 1
 2: 2
 2: 2
2: 42

1:
 1:
 - 1: 1
 2: 2
 - 1: 1
 2: 2
 2: 2
2: 42

1:
 1:
 - 1: 1
 2: 2
 - 1: 1
 2: 2
 2: 2
2: 42

The transform example, in the last document, was inspired by a
question posted by *nowox* [https://stackoverflow.com/q/44388701/1307905] on StackOverflow.

Output of dump() as a string

The single most abused “feature” of the old API is not providing the (second)
stream parameter to one of the dump() variants, in order to get a monolithic string
representation of the stream back.

Apart from being memory inefficient and slow, quite often people using this did not
realise that print(round_trip_dump(dict(a=1, b=2))) gets you an extra,
empty, line after b: 2.

The real question is why this functionality, which is seldom really
necessary, is available in the old API (and in PyYAML) in the first place. One
explanation you get by looking at what someone would need to do to make this
available if it weren’t there already. Apart from subclassing the Serializer
and providing a new dump method, which would ten or so lines, another
hundred lines, essentially the whole dumper.py file, would need to be
copied and to make use of this serializer.

The fact is that one should normally be doing round_trip_dump(dict(a=1, b=2)),
sys.stdout) and do away with 90% of the cases for returning the string, and
that all post-processing YAML, before writing to stream, can be handled by using
the transform= parameter of dump, being able to handle most of the rest. But
it is also much easier in the new API to provide that YAML output as a string if
you really need to have it (or think you do):

import sys
from ruyaml import YAML
from io import StringIO

class MyYAML(YAML):
 def dump(self, data, stream=None, **kw):
 inefficient = False
 if stream is None:
 inefficient = True
 stream = StringIO()
 YAML.dump(self, data, stream, **kw)
 if inefficient:
 return stream.getvalue()

yaml = MyYAML() # or typ='safe'/'unsafe' etc

with about one tenth of the lines needed for the old interface, you can once more do:

print(yaml.dump(dict(a=1, b=2)))

instead of:

yaml.dump((dict(a=1, b=2)), sys.stdout)
print() # or sys.stdout.write('\n')

Departure from previous API

With version 0.15.0 ruyaml starts to depart from the previous (PyYAML) way
of loading and dumping. During a transition period the original
load() and dump() in its various formats will still be supported,
but this is not guaranteed to be so with the transition to 1.0.

At the latest with 1.0, but possible earlier transition error and
warning messages will be issued, so any packages depending on
ruyaml should pin the version with which they are testing.

Up to 0.15.0, the loaders (load(), safe_load(),
round_trip_load(), load_all, etc.) took, apart from the input
stream, a version argument to allow downgrading to YAML 1.1,
sometimes needed for
documents without directive. When round-tripping, there was an option to
preserve quotes.

Up to 0.15.0, the dumpers (dump(), safe_dump,
round_trip_dump(), dump_all(), etc.) had a plethora of
arguments, some inherited from PyYAML, some added in
ruyaml. The only required argument is the data to be
dumped. If the stream argument is not provided to the dumper, then a
string representation is build up in memory and returned to the
caller.

Starting with 0.15.0 load() and dump() are methods on a
YAML instance and only take the stream,
resp. the data and stream argument. All other parameters are set on the instance
of YAML before calling load() or dump()

Before 0.15.0:

from pathlib import Path
import ruyaml

data = ruyaml.safe_load("abc: 1")
out = Path('/tmp/out.yaml')
with out.open('w') as fp:
 ruyaml.safe_dump(data, fp, default_flow_style=False)

after:

from pathlib import Path
from ruyaml import YAML

yaml = YAML(typ='safe')
yaml.default_flow_style = False
data = yaml.load("abc: 1")
out = Path('/tmp/out.yaml')
yaml.dump(data, out)

If you previously used a keyword argument explicit_start=True you
now do yaml.explicit_start = True before calling dump(). The
Loader and Dumper keyword arguments are not supported that
way. You can provide the typ keyword to rt (default),
safe, unsafe or base (for round-trip load/dump, safe_load/dump,
load/dump resp. using the BaseLoader / BaseDumper. More fine-control
is possible by setting the attributes .Parser, .Constructor,
.Emitter, etc., to the class of the type to create for that stage
(typically a subclass of an existing class implementing that).

The default loader (typ='rt') is a direct derivative of the safe loader, without the
methods to construct arbitrary Python objects that make the unsafe loader
unsafe, but with the changes needed for round-trip preservation of comments,
etc.. For trusted Python classes a constructor can of course be added to the round-trip
or safe-loader, but this has to be done explicitly (add_constructor).

All data is dumped (not just for round-trip-mode) with .allow_unicode
= True

You can of course have multiple YAML instances active at the same
time, with different load and/or dump behaviour.

Initially only the typical operations are supported, but in principle
all functionality of the old interface will be available via
YAML instances (if you are using something that isn’t let me know).

If a parse or dump fails, and throws and exception, the state of the
YAML() instance is not guaranteed to be able to handle further
processing. You should, at that point to recreate the YAML instance before
proceeding.

Loading

Duplicate keys

In JSON mapping keys should be unique, in YAML they must be unique.
PyYAML never enforced this although the YAML 1.1 specification already
required this.

In the new API (starting 0.15.1) duplicate keys in mappings are no longer allowed by
default. To allow duplicate keys in mappings:

yaml = ruyaml.YAML()
yaml.allow_duplicate_keys = True
yaml.load(stream)

In the old API this is a warning starting with 0.15.2 and an error in
0.16.0.

When a duplicate key is found it and its value are discarded, as should be done
according to the YAML 1.1 specification [http://yaml.org/spec/1.1/#id932806].

Dumping a multi-documents YAML stream

The “normal” dump_all expected as first element a list of documents, or
something else the internals of the method can iterate over. To read
and write a multi-document you would either make a list:

yaml = YAML()
data = list(yaml.load_all(in_path))
do something on data[0], data[1], etc.
yaml.dump_all(data, out_path)

or create some function/object that would yield the data values.

What you now can do is create YAML() as an context manager. This
works for output (dumping) only, requires you to specify the output
(file, buffer, Path) at creation time, and doesn’t support
transform (yet).

with YAML(output=sys.stdout) as yaml:
 yaml.explicit_start = True
 for data in yaml.load_all(Path(multi_document_filename)):
 # do something on data
 yaml.dump(data)

Within the context manager, you cannot use the dump() with a
second (stream) argument, nor can you use dump_all(). The
dump() within the context of the YAML() automatically creates
multi-document if called more than once.

To combine multiple YAML documents from multiple files:

list_of_filenames = ['x.yaml', 'y.yaml',]
with YAML(output=sys.stdout) as yaml:
 yaml.explicit_start = True
 for path in list_of_filename:
 with open(path) as fp:
 yaml.dump(yaml.load(fp))

The output will be a valid, uniformly indented YAML file. Doing
cat {x,y}.yaml might result in a single document if there is not
document start marker at the beginning of y.yaml

Dumping

Controls

On your YAML() instance you can set attributes e.g with:

yaml = YAML(typ='safe', pure=True)
yaml.allow_unicode = False

available attributes include:

	unicode_supplementary
	Defaults to True if Python’s Unicode size is larger than 2 bytes. Set to False to
enforce output of the form \U0001f601 (ignored if allow_unicode is False)

Transparent usage of new and old API

If you have multiple packages depending on ruyaml, or install
your utility together with other packages not under your control, then
fixing your install_requires might not be so easy.

Depending on your usage you might be able to “version” your usage to
be compatible with both the old and the new. The following are some
examples all assuming import ruyaml somewhere at the top
of your file and some istream and ostream apropriately opened
for reading resp. writing.

Loading and dumping using the SafeLoader:

yml = ruyaml.YAML(typ='safe', pure=True) # 'safe' load and dump
data = yml.load(istream)
yml.dump(data, ostream)

Loading with the CSafeLoader, dumping with
RoundTripLoader. You need two YAML instances, but each of them
can be re-used:

yml = ruyaml.YAML(typ='safe')
data = yml.load(istream)
ymlo = ruyaml.YAML() # or yaml.YAML(typ='rt')
ymlo.width = 1000
ymlo.explicit_start = True
ymlo.dump(data, ostream)

Loading and dumping from pathlib.Path instances using the
round-trip-loader:

in myyaml.py
class MyYAML(yaml.YAML):
 def __init__(self):
 yaml.YAML.__init__(self)
 self.preserve_quotes = True
 self.indent(mapping=4, sequence=4, offset=2)
in your code
from myyaml import MyYAML

some pathlib.Path
from pathlib import Path
inf = Path('/tmp/in.yaml')
outf = Path('/tmp/out.yaml')

yml = MyYAML()
no need for with statement when using pathlib.Path instances
data = yml.load(inf)
yml.dump(data, outf)

Reason for API change

ruyaml inherited the way of doing things from PyYAML. In
particular when calling the function load() or dump()
temporary instances of Loader() resp. Dumper() were
created that were discarded on termination of the function.

This way of doing things leads to several problems:

	it is virtually impossible to return information to the caller apart from the
constructed data structure. E.g. if you would get a YAML document
version number from a directive, there is no way to let the caller
know apart from handing back special data structures. The same
problem exists when trying to do on the fly
analysis of a document for indentation width.

	these instances were composites of the various load/dump steps and
if you wanted to enhance one of the steps, you needed e.g. subclass
the emitter and make a new composite (dumper) as well, providing all
of the parameters (i.e. copy paste)

Alternatives, like making a class that returned a Dumper when
called and sets attributes before doing so, is cumbersome for
day-to-day use.

	many routines (like add_representer()) have a direct global
impact on all of the following calls to dump() and those are
difficult if not impossible to turn back. This forces the need to
subclass Loaders and Dumpers, a long time problem in PyYAML
as some attributes were not deep_copied although a bug-report
(and fix) had been available a long time.

	If you want to set an attribute, e.g. to control whether literal
block style scalars are allowed to have trailing spaces on a line
instead of being dumped as double quoted scalars, you have to change
the dump() family of routines, all of the Dumpers() as well
as the actual functionality change in emitter.Emitter(). The
functionality change takes changing 4 (four!) lines in one file, and being able
to enable that another 50+ line changes (non-contiguous) in 3 more files resulting
in diff that is far over 200 lines long.

	replacing libyaml with something that doesn’t both support 0o52
and 052 for the integer 42 (instead of 52 as per YAML 1.2)
is difficult

With ruyaml>=0.15.0 the various steps “know” about the
YAML instance and can pick up setting, as well as report back
information via that instance. Representers, etc., are added to a
reusable instance and different YAML instances can co-exists.

This change eases development and helps prevent regressions.

Differences with PyYAML

If I have seen further, it is by standing on the shoulders of giants.
 Isaac Newton (1676)

ruyaml is a derivative of Kirill Simonov’s PyYAML 3.11 [https://bitbucket.org/xi/pyyaml] and would not exist without that
excellent base to start from.

The following a summary of the major differences with PyYAML 3.11

Defaulting to YAML 1.2 support

PyYAML supports the YAML 1.1 [http://www.yaml.org/spec/1.1/spec.html] standard, ruyaml supports
YAML 1.2 [http://www.yaml.org/spec/1.2/spec.html] as released in 2009.

	YAML 1.2 dropped support for several features unquoted Yes,
No, On, Off

	YAML 1.2 no longer accepts strings that start with a 0 and solely
consist of number characters as octal, you need to specify such strings with
0o[0-7]+ (zero + lower-case o for octal + one or more octal characters).

	YAML 1.2 no longer supports sexagesimals [https://en.wikipedia.org/wiki/Sexagesimal], so the string scalar
12:34:56 doesn’t need quoting.

	\/ escape for JSON compatibility

	correct parsing of floating point scalars with exponentials

unless the YAML document is loaded with an explicit version==1.1 or
the document starts with:

% YAML 1.1

, ruyaml will load the document as version 1.2.

Python Compatibility

ruyaml requires Python 3.7 or later.

Fixes

	ruyaml follows the indent keyword argument on scalars
when dumping.

	ruyaml allows : in plain scalars, as long as these are not
followed by a space (as per the specification)

Testing

ruyaml is tested using tox [https://pypi.python.org/pypi/tox] and py.test [http://pytest.org/latest/]. In addition to
new tests, the original PyYAML
test framework is called from within tox runs.

Before versions are pushed to PyPI, tox is invoked, and has to pass, on all
supported Python versions, on PyPI as well as flake8/pep8

API

Starting with 0.15 the API for using ruyaml has diverged allowing
easier addition of new features.

Contributing

All contributions to ruyaml are welcome.
Please post an issue or, if possible, a pull request (PR) on github.

Please don’t use issues to post support questions.

TODO:: The maintainers of ruyaml don’t have an official support channel yet.

Documentation

The documentation for ruyaml is written in the ReStructured Text [http://docutils.sourceforge.net/rst.html] format and follows the Sphinx
Document Generator [https://www.sphinx-doc.org/]’s conventions.

Code

Code changes are welcome as well, but anything beyond a minor change should be
tested (tox/pytest), checked for typing conformance (mypy) and pass
pep8 conformance (flake8).

In my experience it is best to use two virtualenv environments, one with the
latest Python from the 2.7 series, the other with 3.5 or 3.6. In the
site-packages directory of each virtualenv make a soft link to the ruyaml
directory of your (cloned and checked out) copy of the repository. Do not under
any circumstances run pip install -e . it will
not work (at least not until these commands are fixed to support packages with
namespaces).

You can install tox, pytest, mypy and flake8 in the Python3
virtualenv, or in a virtualenv of their own. If all of these commands
pass without warning/error, you can create your pull-request.

Flake

The Flake8 [https://flake8.pycqa.org] configuration is part of setup.cfg:

[flake8]
show-source = True
max-line-length = 95
ignore = F405

The suppress of F405 is necessary to allow from xxx import *.

Please make sure your checked out source passes flake8 without test (it should).
Then make your changes pass without any warnings/errors.

Tox/pytest

Whether you add something or fix some bug with your code changes, first add one
or more tests that fail in the unmodified source when running tox. Once that
is in place add your code, which should have as a result that your added test(s)
no longer fail, and neither should any other existing tests.

Typing/mypy

You should run mypy from ruyaml’s source directory:

mypy --strict --follow-imports silent lib/ruyaml/*.py

This command should give no errors or warnings.

Vulnerabilities

If you find a vulnerability in ruyaml (e.g. that would show the safe
and rt loader are not safe due to a bug in the software)), please contact
the maintainers directly via email.

After the vulnerability is removed, and affected parties notified to allow them
to update versions, the vulnerability will be published, and your role in
finding/resolving this properly attributed.

Upstrem Merge

The process to merge ruamel.yaml’s Mercurial repository to ours is
non-trivial due to non-unique Mergurial-to-git imports and squash merges.

Preparation

We create a git import of the Upstream repository. Then we add a
pseudo-merge node to it which represents our version of the code
at the point where the last merge happened. The commit we want is most
likely named “Upstream 0.xx.yy”.

So, first we get a git copy of an HG clone of the ruamel.yaml
repository:

install Mercurial (depends on your distribution)

cd /your/src
mkdir -p ruyaml/git
cd ruyaml/git; git init
cd ../
hg clone http://hg.code.sf.net/p/ruamel-yaml/code hg

Next we prepare our repository for merging. We need a hg-fast-export
script:

cd ..
git clone git@github.com:frej/fast-export.git

We use that script to setup our git copy:

cd ../git
../fast-export/hg-fast-export.sh -r ../hg --ignore-unnamed-heads

Now let’s create a third repository for the actual work:

cd ../
git clone git@github.com:pycontribs/ruyaml.git repo
cd repo
git remote add ../git ruamel
git fetch ruamel

Create a branch for merging:

git checkout -b merge main

This concludes setting things up.

Incremental merge

First, let’s pull the remote changes (if any):

cd /your/src/ruyaml/hg
hg pull
cd ../git
../fast-export/hg-fast-export.sh -r ../hg --ignore-unnamed-heads
cd ../repo
git fetch --all
git checkout merge

Next, we need a pseudo-merge that declares “we have merged all of Upstream
up to THAT into THIS”, where THIS is the latest Merge commit in our
repository (typically named “Upstream 0.xx.yy”) and THAT is the
corresponding commit in the Ruamel tree (it should be tagged 0.xx.yy):

git log --date-order --all --oneline
git reset --hard THIS
git merge -s ours THAT

Now we’ll “merge” the current Upstream sources:

git merge --squash ruamel/main

This will create a heap of conflicts, but no commit yet.

Note

The reason we do a squash-merge here is that otherwise git will
un-helpfully upload the complete history of ruamel.yaml to GitHub.
It’s already there, of course, but due to the diverging git hashes that
doesn’t help.

The next step, obviously, is to fix the conflicts. (There will be a bunch.)
If git complains about a deleted __init__.py, the solution is to git
rm -f __init__.py.

Then, commit your changes:

git commit -a -m "Merge Upstream 0.xx.yz"
git push -f origin merge

Now check github. If everything is OK, congratulations, otherwise fix and
push (no need to repeat the -f).

Index

 nav.xhtml

 Table of Contents

 		
 ruyaml

 		
 Overview

 		
 Installing

 		
 Optional requirements

 		
 Basic Usage

 		
 More examples

 		
 Dumping Python classes

 		
 Details

 		
 Indentation of block sequences

 		
 Inconsistently indented YAML

 		
 Positioning ‘:’ in top level mappings, prefixing ‘:’

 		
 Document version support

 		
 Round trip including comments

 		
 Config file formats

 		
 Extending

 		
 Smartening

 		
 Examples

 		
 Output of dump() as a string

 		
 Departure from previous API

 		
 Loading

 		
 Duplicate keys

 		
 Dumping a multi-documents YAML stream

 		
 Dumping

 		
 Controls

 		
 Transparent usage of new and old API

 		
 Reason for API change

 		
 Differences with PyYAML

 		
 Defaulting to YAML 1.2 support

 		
 Python Compatibility

 		
 Fixes

 		
 Testing

 		
 API

 		
 Contributing

 		
 Documentation

 		
 Code

 		
 Flake

 		
 Tox/pytest

 		
 Typing/mypy

 		
 Vulnerabilities

 		
 Upstrem Merge

 		
 Preparation

 		
 Incremental merge

_static/minus.png

_static/file.png

_static/plus.png

